Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing
نویسندگان
چکیده
Foxa2 (HNF3 beta) is a one of three, closely related transcription factors that are critical to the development and function of the mouse liver. We have used chromatin immunoprecipitation and massively parallel Illumina 1G sequencing (ChIP-Seq) to create a genome-wide profile of in vivo Foxa2-binding sites in the adult liver. More than 65% of the approximately 11.5 k genomic sites associated with Foxa2 binding, mapped to extended gene regions of annotated genes, while more than 30% of intragenic sites were located within first introns. 20.5% of all sites were further than 50 kb from any annotated gene, suggesting an association with novel gene regions. QPCR analysis demonstrated a strong positive correlation between peak height and fold enrichment for Foxa2-binding sites. We measured the relationship between Foxa2 and liver gene expression by overlapping Foxa2-binding sites with a SAGE transcriptome profile, and found that 43.5% of genes expressed in the liver were also associated with Foxa2 binding. We also identified potential Foxa2-interacting transcription factors whose motifs were enriched near Foxa2-binding sites. Our comprehensive results for in vivo Foxa2-binding sites in the mouse liver will contribute to resolving transcriptional regulatory networks that are important for adult liver function.
منابع مشابه
Genome-Wide Location Analysis Reveals Distinct Transcriptional Circuitry by Paralogous Regulators Foxa1 and Foxa2
Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determi...
متن کاملCis-regulatory modules in the mammalian liver: composition depends on strength of Foxa2 consensus site
Foxa2 is a critical transcription factor that controls liver development and plays an important role in hepatic gluconeogensis in adult mice. Here, we use genome-wide location analysis for Foxa2 to identify its targets in the adult liver. We then show by computational analyses that Foxa2 containing cis-regulatory modules are not constructed from a random assortment of binding sites for other tr...
متن کاملGenome-wide roles of Foxa2 in directing liver specification.
Dear Editor, Members of Foxa transcription factor family, namely Foxa1, Foxa2, and Foxa3, play crucial roles in guiding hepatic differentiation and hepatic homeostatic maintenance (Le Lay and Kaestner, 2010; Zaret and Carroll, 2011). They act at several critical time points to regulate hepatic differentiation as early as embryonic definitive endoderm (DE) stage (Gualdi et al., 1996). Combinatio...
متن کاملMICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS
Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...
متن کاملSurvey of protein–DNA interactions in Aspergillus oryzae on a genomic scale
The genome-scale delineation of in vivo protein-DNA interactions is key to understanding genome function. Only ∼5% of transcription factors (TFs) in the Aspergillus genus have been identified using traditional methods. Although the Aspergillus oryzae genome contains >600 TFs, knowledge of the in vivo genome-wide TF-binding sites (TFBSs) in aspergilli remains limited because of the lack of high-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 36 شماره
صفحات -
تاریخ انتشار 2008